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Abstract: Recently, research on hyperspectral image classification (HSIC) methods has
made significant progress. However, current models commonly only focus on the primary
features, overlooking the valuable information contained in secondary features that can
enhance the model’s learning capabilities. To address this issue, an adaptive feature
enhanced gaussian weighted network (AFGNet) is proposed in this paper. Firstly, an
adaptive feature enhancement module (AFEM) was designed to evaluate the effectiveness
of different features and enhance those that are more conducive to model learning. Secondly,
a gaussian weighted feature fusion module (GWF2) was constructed to integrate local and
global feature information effectively. Finally, a multi-head collaborative attention (MHCA)
mechanism was proposed. MHCA enhances the feature extraction capability of the model
for sequence data through direct interaction and global modeling. Extensive experiments
were conducted on five challenging datasets. The experimental results demonstrate that
the proposed method outperforms several SOTA methods.

Keywords: hyperspectral image classification; convolutional neural networks; transformer;
feature enhancement; gaussian weight; attention

1. Introduction
Hyperspectral images (HSIs) are cubic data that simultaneously capture spatial and

spectral information of target objects [1]. By combining imaging technology with spec-
troscopy, hyperspectral images generate continuous and narrow-band spectral image data,
enabling a more comprehensive and detailed revelation of ground features [2]. Due to their
unique spatial spectral integration characteristics, hyperspectral images are widely used in
various fields such as medical imaging [3,4], agriculture [5,6], and mineral exploration [7].

HSIC is the process of analyzing the information within the image to assign category
labels to each pixel in the image [8]. Early popular HSIC techniques primarily relied on the
unique spectral information of different ground objects for classification. Some representa-
tive methods include K-nearest neighbor classifiers [9], support vector machines [10–12],
and sparse representation classification [13]. Although these methods are simple and easy
to implement, they only utilize spectral information and do not consider the continuity of
spatial land distribution, resulting in incomplete feature extraction. In addition, traditional
classification methods overly rely on expert experience, making it difficult to ensure the
robustness and generalization of the methods.
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In recent years, deep learning has shown strong application potential in the field
of HSIC [14–18]. Convolutional neural network (CNN) [19,20], deep belief networks
(DBNs) [21], and stacked autoencoders (SAEs) [22] have achieved good results in HSIC.
However, both DBNs and SAEs require input data to be 1D vectors, which leads to sig-
nificant limitations in the application of these models. CNN, with its characteristics of
local perception and parameter sharing, can extract deeper data features while avoiding a
sharp increase in model parameters, thus receiving widespread attention. Zhang et al. [23]
proposed a spectral partitioning residual network (SPRN) based on 2D convolution ker-
nels. This method divides the input spectrum into multiple non-overlapping continuous
sub-bands by equivalently using grouped convolution, and employs cascaded parallel
improved residual blocks to extract spectral–spatial features from these sub-bands sepa-
rately [24]. Roy et al. [25] proposed a hybrid spectral CNN (HybridSN). Compared with
the method that only uses 2D convolution kernels, this method combines more suitable 3D
convolution kernels for hyperspectral data based on 2D convolution kernels, thus learning
more abstract feature representations. Li et al. [26] proposed a central vector oriented self-
similarity network (CVSSN), aiming to address the issue that existing CNN-based models
ignore the potential relationship between the central pixel and its neighboring pixels when
processing HSIs. Su et al. [27] proposed a method based on normalized spectral clustering
with kernel-based learning (NSCKL). This method adopts a normalized spectral clustering
algorithm, which can learn new features under the Manifold Hypothesis, and combines
clustering features with extreme learning machines through kernel learning methods to
achieve semi-supervised classification. Mei et al. [28] proposed a step activation network
with binary weight (SAWB). This method replaces floating-point operations with integers,
thereby accelerating the inference process of the network and reducing computational costs.

In traditional methods, treating each pixel equally makes it difficult to focus on
valuable pixels [29–31]. To alleviate this problem, Zhang et al. [32] proposed a local–
global cross fusion network with Gaussian initialization position prompts (LGGNet). Yang
et al. [33] proposed a cross-attention spectral–spatial network (CASSN). This method
utilizes cross-spectral and cross-spatial attention components to generate frequency band
weights and spectral–spatial features, aiming to alleviate the problem of previous methods
being less robust to HSI rotation. Wu et al. [34] proposed a network combining cross-
channel dense connection and multi-scale dual aggregated attention (CDC_MDAA) to
alleviate the difficulty of labeling data in HSIC. Zhang et al. [35] proposed a spectral–spatial
self-attention network (SSSAN). This network can adaptively combine the local features of
the pixels to be classified with long-distance dependencies.

Despite the numerous significant achievements of CNN in the field of HSIC, the
limited receptive field has remained a persistent challenge. This problem makes it rela-
tively difficult for networks to learn the dependency relationships of long-distance spatial
distributions. Although this problem can be alleviated by using convolution kernels of
different sizes, it also increases the complexity of the model and may lead to overfitting
during network training.

Transformer, a deep learning model initially proposed by Vaswani et al. in 2017, was
originally applied in the field of NLP and achieved remarkable results [36]. However, the
early application of Transformer in the field of CV faced various challenges, including
computational efficiency, model adaptability, and the complexity of training and inference.
With the emergence of research achievements such as ViT, LeViT, DeepViT, and others, the
application of Transformer in the CV field has been greatly expanded [37–41]. In view of
this, some scholars have begun to apply Transformer in the field of HSIC. Hong et al. [42]
proposed a backbone network specifically designed for HSIC, known as SpectralFormer
(SF). This method can not only learn local spectral representations but also effectively
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transfers similar components from shallow to deep layers. Mei et al. [43] proposed a
group-aware hierarchical Transformer (GAHT), which extracts more detailed local spatial
spectral relationships through a group embedding module. Zhong et al. [44] proposed
a spectral spatial Transformer network (SSTN), which comprises spatial attention and
spectral correlation modules to overcome the limitations of the limited receptive field of
convolutional kernels.

The multi-head self-attention mechanism (MHSA) in Transformer can calculate the
cross-correlation between all elements in the input sequence, but this also makes it diffi-
cult to fully focus on local features. To overcome this limitation, some researchers have
attempted to combine Transformer with other models. Song et al. [45] proposed a bot-
tleneck spatial spectral Transformer (BS2T), which combines CNN and Transformer to
achieve feature extraction and capture long-distance dependencies. Specifically, CNN is
utilized for feature compression and expansion, while Transformer enhances the feature
representation by capturing long-distance dependencies. Sun et al. [46] proposed a spectral
spatial feature tokenization transformer (SSFTT), which extracts spectral spatial features
through CNN and employs a feature tokenizer to perform feature transformation to obtain
advanced semantic features. Jiang et al. [47] proposed a graph generative structure aware
transformer (GraphGST). This method proposes an absolute position encoding to obtain
the absolute position sequence of pixels and integrate it into the Transformer architecture.
Feng et al. [48] proposed a central attention transformer (CAT). This method improves
classification performance by using superpixel sampling and multi-level random sampling
mechanisms, combined with spatial spectral tokens and central attention structures.

In addition, Wang et al. [49] proposed a capsule attention network (CAN). CAN
combines activity vectors with attention mechanisms to improve HSIC. Convolution and
Transformer consume a lot of computing resources during training. Therefore, Jamali
et al. [50] proposed a novel backbone network called HybridKAN. This method achieves
faster convergence speed by fusing 1D, 2D, and 3D KAN modules.

Although the above methods have achieved good classification performance, there
are still some challenges, including the following:

1. Existing models often only focus on the primary features, neglecting the potential
value of secondary features in model learning.

2. The local receptive field of the convolution kernel makes it difficult to obtain
global information.

To address these issues, an adaptive feature enhanced gaussian weighted network
(AFGNet) is proposed. Firstly, an adaptive feature enhancement module (AFEM) was
designed. AFEM can accurately evaluate the impact of different features on classification
performance and dynamically enhance features that are more conducive to model learning.
Secondly, a Gaussian weighted feature fusion module (GWF2) was proposed to effectively
fuse local and global features by establishing mapping relationships between local features.
Finally, a multi-head collaborative attention (MHCA) mechanism was developed. Through
direct interaction and global modeling, it enhances the model’s ability to extract key
features from the sequence data. Extensive experiments are conducted on five challenging
datasets. The experimental results demonstrate that the proposed method outperforms
several SOTA methods.

The main contributions of this paper can be summarized as follows:

1. An adaptive feature enhancement module (AFEM) is proposed. AFEM can adaptively
enhance features that are more conducive to model learning.

2. A Gaussian weighted feature fusion module (GWF2) is proposed. GWF2 effectively
integrates local and global features by extracting and constructing mapping relation-
ships between local features.
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3. A multi-head collaborative attention (MHCA) mechanism is designed. By direct
interaction and global modeling, MHCA can more adequately capture the key features
in the input sequence.

The remaining parts of this paper are arranged as follows: Section 2 introduces the
three modules of the proposed method in detail. Section 3 first introduces the datasets and
experimental settings. Then, detailed experimental verification was conducted on the pro-
posed method. Section 4 provides conclusions and prospects for future research directions.

2. Methodology
Original HSI data are denoted as I ∈ Rh×w×l , where h× w is the spatial size and l is

the number of spectral bands.

2.1. Overall Structure

The overall structure of the proposed AFGNet is shown in Figure 1, which mainly
consists of three modules: an AFEM module for adaptively enhancing features that are
more beneficial for model learning, a GWF2 module for extracting and fusing “spatial-
spectral” features, and multiple Transformer encoders (TE) incorporating MHCA to learn
relationships among global features. Detailed introductions about all three modules are
presented in Sections 2.2–2.4.
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Figure 1. Overall structure of proposed AFGNet. First, the PCA algorithm is used to remove
redundant bands. Then, the proposed AFEM module is constructed to distinguish the primary
features from the secondary features. Next, the proposed GWF2 module is designed to extract local
features with the assistance of global features. Finally, the proposed MHCA module is utilized to
extract global features and complete classification prediction.

First, the HSI data I are preprocessed. The HSI data I contain a vast amount of spectral
bands, offering valuable spectral information while introducing redundancy. To mitigate
this, PCA [51] is applied to reduce the dimensionality of the original HSI data, thereby
decreasing computational complexity and preserving essential spectral features. The HSI
data after PCA dimension reduction are denoted as Ipca ∈ Rh×w×b, where b is the number
of spectral bands after PCA. Next, 3D-patch extraction is performed on the HSI data Ipca.
Each patch P ∈ Rs×s×b covers a window size of s× s. The central pixel of each patch is set
to xc ∈ R1×1×b. The true label of a patch is determined by the label of its central pixel.
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2.2. AFEM Module

The features with strong correlation in the input feature map are considered as the
primary features. The features other than these are considered as secondary features. In the
field of HSIC, the phenomenon of different objects with similar spectra leads to the existing
attention mechanisms inevitably introducing noise from inter-class spectral similarities
while enhancing the representation of primary spectral features of target objects. Moreover,
the coexisting phenomenon of the same object with different spectra further exacerbates
the issue of feature confusion. Due to the suppression effect of attention mechanisms on
secondary discriminative features, it is difficult for the model to effectively capture spectral
variations within the same category of objects caused by factors such as lighting conditions
and phenological changes. To address this issue, an AFEM is proposed, with its detailed
structure shown in Figure 2.
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that, the similarity matrix between the surrounding pixels and the central pixel is obtained using
cosine similarity. Next, the similarity matrix is split into primary and secondary features by a preset
threshold and multiplied with the adaptive coefficient. Finally, the attention map is merged and the
original feature map is weighted.

Firstly, the central spectral pixel xc is extracted from the input patch P. Next, cosine
similarity is employed to assess the similarity between the central pixel and the surrounding
pixels in patch P, resulting in an initial attention map M ∈ Rs×s. This process can be
represented as

M = Fcos(xc, P) =
xc × xi,j

∥xc∥ ×
∥∥xi,j

∥∥ (1)

Here, xi,j denotes the surrounding pixel, where 0 < i, j < s. Fcos represents the cosine
similarity function.

Then, a threshold matrix with the same shape as the initial attention map M is con-
structed. The value of this matrix is determined by the product of the mean of M and the
preset threshold coefficient λ. Next, based on this threshold matrix, the initial attention map
is divided into a primary feature attention map M′h and a secondary feature attention map
M′l. Following this, an adaptive adjustment strategy is adopted to process the two types of
attention maps. Specifically, we introduce two parameters, α and β, and incorporate them
into the backpropagation process of the network.

By calculating gradients, we can quantify the contribution of different features to
model learning. The positive gradient indicates that this feature contributes to the improve-
ment of model performance, thereby prompting the model to pay higher attention to it in
subsequent training.
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Finally, the two types of attention maps are fused again to obtain an adaptively
enhanced attention map, denoted as M′′. This process can be represented as

M′h, M′l = Split(M− (λ×AvgPool(M))) (2)

M′′ = α ·M′h + β ·M′l (3)

Here, α and β are two parameters with gradients. Based on attention map M′′, the
weighted feature map X ∈ Rs×s×b can be expressed as

X = σ
(
M′′ ⊗ P + P

)
=

1
1 + e−(M′′⊗P+P)

(4)

Here, σ denotes the Sigmoid function and ⊗ denotes the element-wise multiplication.

2.3. GWF2 Module

The limited receptive field of convolution kernels means that each kernel can only
capture local information within its direct area of effect, which restricts the network’s ability
to capture global information. To address this issue, a Gaussian weighted feature fusion
module (GWF2) was designed, and its detailed structure is shown in Figure 1.

The data enhanced by AFEM will be used as input for this section. Firstly, X are
processed by 3D convolutional block to jointly extract “spatial-spectral” features. The
convolution outputs feature maps with c channels. These feature maps will be further
abstracted and fused in subsequent operations to obtain higher-level representations. After-
wards, the channel dimension and spectral dimension are merged, denoted as X′ ∈ Rs×s×q,
where q = b× c. This process can be expressed as

X′ = Reshape
(

Fτ

(
FBN

(
F′′′3×3(X)

)))
(5)

Here, F′′′3×3 represents a 3D convolutional layer with a kernel size of 3, FBN represents
a batch normalization layer, and Fτ represents the Mish function.

We then model the relationships between channels using a mapping operation, al-
lowing features from each channel to be weighted by features from other channels. Sub-
sequently, we fuse the original input with the weighted result and normalize the fused
features using a Sigmoid function. The result is denoted as A ∈ Rs×s×q. This process can
be expressed as

X′′ = Dropout
(
ReLU

(
Fspe

(
X′

)))
(6)

A = Reshape
(

1
1 + e−(X+X′′ )

)
(7)

Here, X′′ represents the data after global spectral fusion. Fspe represents a linear layer
initialized with a Gaussian distribution [52]. Next, 2D convolutional block is used to extract
spatial features from the feature map. Then, the spatial dimension is flattened. The result is
denoted as B′ ∈ Rp×q. This process can be represented as

B = ReLU
(

FBN
(

F′′3×3(A)
))

(8)

B′ = Flatten(Dropout(B)) (9)

Here, B represents the features after convolution processing, and B′ represents the
data after B is flattened. F′′3×3 represents a 2D convolutional layer with a kernel size of 3.

Similarly, we model the relationships between spatial positions using a mapping
operation, enabling features at each position to be weighted by features from other positions.
Following this, we perform two feature fusions on the original input and merge the fused
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result with the weighted result. The result is denoted as T ∈ Rp×p. This process can be
represented as

B′′ = Dropout
(
ReLU

((
Fspa

(
B′
))))

(10)

A′ = Reshape
(

Fspa
(

Fspe(A)
))

(11)

T = Reshape
(
A′ + B′′

)
(12)

Here, B′′ represents the result after global spatial fusion, and A′ represents the skip
connection data after global spectral and spatial fusion. Fspa adopts the same weight
initialization as Fspe.

GWF2 extracts the local structure of feature maps through convolution, while estab-
lishing dependencies between local features using mapping operations, thereby achieving
more effective feature extraction.

2.4. MHCA Mechanism

By dividing the sequence into multiple heads and computing attention maps in
parallel, multi-head self-attention (MHSA) can obtain multiple forms of representations,
but the sequence information that each head focuses on is limited. To alleviate this problem,
a multi-head collaborative attention (MHCA) mechanism is proposed, and its detailed
structure is shown in Figure 3.
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Figure 3. Structure of MHCA. The input sequence is divided into two branches. First, the first branch
uses maximum pooling and mean pooling to obtain the attention map. Then, the second branch maps
the Q branch and the K.V branch independently and uses scaled dot product attention to obtain the
weighted feature map. Finally, the attention map of the first branch is used to re-weight the result of
the second branch to obtain the final feature map.

The sequence T processed by GWF2 will be used as the input for this section. We
concatenate this sequence with a learnable semantic token Tcls, which will be used for the
final classification prediction. Next, mark the position information of each element in the
sequence through positional encoding. Afterwards, layer normalization (LN) is utilized
to ensure the stability of the feature distribution. This result is recorded as Tin ∈ Rp+1×p.
This process can be expressed as

Tin = FLN(Concat(Tcls, T1, T2, . . . , Tp) + PE) (13)

Here, FLN denotes the LN layer and PE represents the positional embedding.
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To preserve more original information in the Query, we adopt an independent mapping
strategy, where Key and Value are segmented from the mapping result of the same linear
layer. Next, we perform a dot-product operation between Query and the transpose of Key,
and then scale by the square root of the dimension of Key. Following this, the Softmax
function is employed to convert the results into attention scores. Finally, we perform a
matrix multiplication between the attention scores and Value to obtain the output of a
single head. By concatenating the outputs of all heads, the result is denoted as T′ ∈ Rp+1×p.
This process can be represented as follows:

Q, (K, V)← Linear(Tin), Linear(Tin) (14)

SA = Attention(Q, K, V) = Softmax
(

QKT
√

dK

)
V (15)

T′ = Multi-head(Q, K, V) = Concat(SA1, SA2, · · · , SAh) ·W (16)

Here, SA represents the weighted result with an attention head. W represents the
parameter matrix. To better capture the global dependencies in the sequence, we use global
max pooling and global average pooling to compress the channel dimensions in the original
sequence, which can be expressed by the following formula:

U = Reshape(MaxPool(Tin) + AvgPool(Tin)) (17)

The result is denoted as U. Then, we project the compressed feature into a low-
dimensional space using a fully connected layer and introduce non-linearity with the
Mish function. Subsequently, a linear transformation is applied to restore the original
dimension, and a sigmoid gating function is employed to obtain attention weights, thereby
enabling fine-grained modeling of global information. Finally, we perform an element-wise
multiplication of sequence and attention weights, resulting in the final output. This part is
inspired by the work of SE, and the process can be represented as:

U′ = Linear(Fτ(Linear(U))) (18)

T′′ = T′ ⊗ Reshape
(

1
1 + e−U′

)
(19)

After these operations, each attention head not only captures more sequence in-
formation but also undergoes a quadratic re-weighting process involving all sequence
elements, enabling the model to capture global dependencies more accurately. Subse-
quently, T′′ undergoes (LN), a multi-layer perceptron MLP, and residual connection, as
illustrated in Figure 1. After repeating this encoder block multiple times, we extract Tcls for
final classification.

3. Experiments
To verify the effectiveness of the proposed method, extensive experiments were con-

ducted on five publicly available classic datasets. To avoid the randomness of the experi-
ment, the average results of 10 repeated experiments were used for all experimental data.

3.1. Datasets

To validate the performance of the proposed method, this paper conducted extensive
experiments on five publicly available datasets: Indian Pines (Indiana, USA), Pavia Uni-
versity (Pavia, Italy), Houston 2013 (Houston, TX, USA), Longkou (Jingzhou, China), and
LaoYuHe (Kunming, China).
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The Indian Pines (IP) dataset was imaged in June 1992 in Indiana, USA, and captured
by an airborne visible infrared imaging spectrometer (AVIRIS) (NASA, Washington, DC,
USA). The size of the dataset is 145 × 145, with a spatial resolution of approximately
20 m and a wavelength range of 0.4–2.5 nm. It contains 16 ground object categories and
224 continuous bands, of which 20 absorbing bands (104–108, 150–163, 220) are removed,
leaving 200 bands for training.

The Pavia University (UP) dataset was acquired during a flight over Pavia, northern
Italy, using the ROSIS sensor. The dataset has a size of 610 × 340, with a spatial resolution
of 1.3 m, and contains 9 ground-object categories and 103 bands.

The Houston 2013 (HT) dataset [53] was imaged in Houston, Texas, and surrounding
rural areas in the United States, using the compact airborne spectrographic imager (CASI)
1500 sensor (ITRES, Calgary, AB, Canada). The dataset has a size of 349 × 1905, with a
spatial resolution of 2.5 m, and contains 15 ground object categories and 144 bands.

The LongKou (LK) dataset [54,55] was imaged on 17 July 2018 in Longkou Town,
Hubei Province, China, using a DJI M600 Pro drone (DJI, Shenzhen, China) equipped with
an 8 mm hyperspectral sensor. The size of this dataset is 550 × 400, with a band range
of 400–1000 nm and a spatial resolution of 0.463 m. It contains six crop categories and
270 bands.

The LaoYuHe (LYH) dataset [56] was imaged on May 2024 in Laoyuhe Wetland Park,
Kunming City, Yunnan Province, China, and collected by OHS satellite. The size of this
dataset is 391 × 591, with a wavelength range of 0.4 to 1 µm and a spatial resolution of
10 m. It contains 8 land cover categories and 32 bands.

Tables 1 and 2 list the land cover class names, the number of training samples, and
the number of testing samples for each dataset. For the Indian Pines and Houston 2013
datasets, the number of training samples is 5% of the total samples; for the Pavia University
and LaoYuHe datasets, it is 1%; and for the Longkou dataset, it is 0.2%.

Table 1. Training and test samples numbers for Indian Pines, Pavia University, and Houston 2013.

No
Indian Pines Pavia University Houston 2013

Class Name Training Test Class Name Training Test Class Name Training Test

1 Alfafa 2 44 Asphalt 86 6545 Healthy Grass 63 1188
2 Corn N. 71 1357 Meadows 186 18,463 Stressed Grass 63 1191
3 Corn M. 41 789 Gravel 21 2078 Synthetic Grass 35 662
4 Corn 12 225 Trees 31 3033 Trees 62 1182
5 Grass P. 24 459 Painted M. S. 13 1332 Soil 62 1180
6 Grass T. 37 693 Bare soil 50 4979 Water 16 309
7 Grass P. M. 1 27 Bitumen 13 1317 Residential 63 1205
8 Hay W. 24 454 S. B. B. 37 3645 Commerical 62 1182
9 Oats 1 19 Shadows 10 937 Road 63 1189
10 Soybean N. 49 923 427 42,349 Highway 61 1166
11 Soybean M. 123 2332 Railway 62 1173
12 Soybean C. 30 563 Parking Lot 1 62 1171
13 Wheat 10 195 Parking Lot 2 23 446
14 Woods 63 1202 Tennis Court 21 407
15 B. G. T. D. 19 367 Running Track 33 627
16 S. S. T. 5 88

- Total 512 9737 Total 427 42,349 Total 751 14,278
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Table 2. Training and test samples numbers for Longkou and LaoYuHe.

No
Longkou LaoYuHe

Class Name Training Test Class Name Training Test

1 Corn 69 34,442 Metasequoia 55 5452
2 Cotton 17 8357 Other Tree Species 29 2853
3 Sesame 6 3025 Greenhouse Farmland 67 6599
4 Broad-leaf soybean 126 63,086 Bare Land 21 2135
5 Narrow-leaf soybean 8 4143 Water Bodies 77 7625
6 Rice 24 11,830 Buildings 24 2432
7 Water 134 66,922 Asphalt 68 6735
8 Roads and houses 14 7110 Pitches 2 166
9 Mixed weed 11 5218

- Total 409 204,133 343 33,997

3.2. Experiment Details

1. The proposed method was implemented using PyTorch 1.10.1 and its performance was
evaluated on an NVIDIA GeForce RTX 3090 GPU (NVIDIA, Santa Clara, CA, USA).

2. This paper uses three common evaluation indicators, namely overall accuracy (OA),
average accuracy (AA), and Kappa coefficient (κ × 100), to compare the performance
of all methods.

3. To ensure the fairness of the experiment, all compared methods followed the optimal
parameter configuration in their respective papers. Figure 4 shows the impact of
different patches and learning rates on the classification performance of the proposed
method. For the IP and UP datasets, the patch size was set to 13× 13, and the learning
rate was set to 1 × 10−3. For the HT dataset, the patch size was set to 13 × 13, and the
learning rate was set to 5 × 10−4. For the LK dataset, the patch size was set to 15 × 15,
and the learning rate was set to 5 × 10−3. For the LYH dataset, the patch size was set
to 15 × 15, and the learning rate was set to 5 × 10−4. In addition, the StepLR strategy
was adopted to adjust the learning rate during training, that is, the learning rate was
multiplied by 0.9 for every tenth of the total training epoch. Finally, the network was
trained using the Adam optimizer, and the training epoch and batch size were set
to 100 and 64, respectively. The threshold coefficient λ in the AFEM module was set
to 1.05.

3.3. Ablation for GWF2

In Section 2.3, GWF2 achieves effective extraction of spectral and spatial features by
combining a linear layer with a Gaussian weight of the convolution kernel. To verify the
impact of spectral and spatial feature fusion on model performance, this section designs a
set of comparative experiments. The experimental results are shown in Figure 5. When
no feature fusion mechanism is included, i.e., GWF2 consists only of basic convolutional
layers, the model’s classification performance on all datasets is at the lowest level. When
any feature fusion mechanism is introduced, the classification performance of the model is
significantly improved. Furthermore, when the GWF2 module adopts a complete structure,
the model achieves the best classification effect. This experimental result demonstrates the
effectiveness of spectral/spatial feature fusion.

3.4. Ablation for AFEM and MHCA

This section verifies the effectiveness of AFEM and MHCA. Taking the GWF2 module
as the baseline model, the changes in model performance were compared by removing
different components. The experimental results are shown in Table 3.
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Table 3. Ablation experiments. (OA is adopted as evaluation indicator, the optimal performance
is bolded).

Case
Components Dataset

AFEM GWF2 MHCA IP UP HT LK LYH

1 ✘ ✔ ✘ 97.27 97.94 98.17 97.99 96.31
2 ✔ ✔ ✘ 97.78 98.26 98.56 98.72 96.94
3 ✘ ✔ ✔ 97.60 98.28 98.58 98.58 96.68
4 ✔ ✔ ✔ 98.12 98.34 98.68 98.88 97.06
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1. In the proposed AFEM module, we achieved adaptive enhancement of features by
differentially processing different features. In Case 1 of Table 3, the model only
contained the GWF2 module, and the classification performance of the model was
the lowest at this time. In Case 2, AFEM was introduced into the model, and it can
be observed that the classification performance of the model has been significantly
improved. Compared with Case 1, the classification performance of the model at this
time improved by 0.49%, 0.32%, 0.39, 0.71%, and 0.63%, respectively, on all datasets.
This result strongly proves the effectiveness of AFEM.

2. In the proposed MHCA module, the global dependencies in the features were fully
captured through the collaborative work of multiple attentions. In Case 3 of Table 3,
the MHCA module was introduced into the model. At this time, the model obtained
performance improvements comparable to Case 2. OA was improved by 0.33%,
0.40%, 0.51%, 0.89%, and 0.75% on all datasets, respectively. This result proves the
effectiveness of MHCA. In addition, in Case 4, the model included all three modules.
At this time, the classification performance of the model was also the best, which
proves that the proposed modules can work together effectively.

3.5. Analysis of Learnable Parameters in AFEM

In the AFEM module, by introducing learnable parameters α and β, the input features
are differentiated. To verify the effectiveness of the mechanism, 5 sets of experiments were
conducted, and the results are shown in Figure 6, where α corresponds to the primary
feature and β corresponds to the secondary feature.
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It can be observed that the change trends of these parameters show obvious differences
in different datasets. Specifically, on the IP and UP datasets, parameter α showed an upward
trend, while parameter β related to the secondary feature gradually decreased, which is
consistent with the performance of most attention mechanisms. However, the situation is
different on the HT dataset. Compared with parameter α related to the primary feature,
parameter β obtained a higher weight, indicating that on this dataset, the secondary features
that are beneficial to the classification performance of the model were enhanced.

In addition, on the LK dataset, although parameter α obtained a significant gain,
parameter β was not overly suppressed, indicating that on this dataset, the model effectively
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utilizes the important information in the secondary features while maintaining attention
to the primary features. Finally, the change trends of these two parameters on the LYH
dataset were similar to those on the IP dataset.

These experimental results not only demonstrate that the AFEM module can flexibly
process and enhance the most beneficial features according to the characteristics of the
current input features, but also emphasize the importance of secondary features in the
model learning process because they also contain information that is crucial to improving
model performance.

3.6. Quantitative Evaluation

This section compares the proposed AFGNet with some state-of-the-art HSIC methods,
including HybridSN [24], SSSAN [35], SPRN [23], CVSSN [26], GAHT [43], ViT [37], SF [42],
SSTN [44], SSFTT [46], CAN [49], and HybridKAN [50]. The experimental results are shown
in Tables 4–8. Among them, HybridSN, SSSAN, SPRN, and CVSSN adopt CNN-based
frameworks; GAHT, SF, and SSTN are based on Transformer; and SSFTT and the proposed
method integrate CNN and Transformer to form a hybrid structure. Particularly, SPRN
and CVSSN also utilize the idea of adaptive feature enhancement.

Table 4. Classification performance obtained by different methods for Indian Pines dataset. (The opti-
mal performance of OA, AA, and κ × 100 are bolded, No. 1–16 represents accuracy of each category).

No. HybridSN SSSAN SPRN CVSSN GHAT ViT SF SSTN SSFTT CAN HybridKAN Proposed

1 92.10 77.97 99.75 88.63 77.92 13.99 98.57 99.53 59.77 0.93 22.80 88.40
2 86.65 80.38 98.03 93.06 66.72 62.28 63.99 95.04 94.75 71.08 45.83 95.88
3 85.37 80.70 97.29 95.93 59.67 57.82 63.53 97.51 97.13 72.98 42.75 98.25
4 91.35 80.72 97.48 93.56 76.48 49.53 68.07 94.79 91.64 23.01 33.53 96.80
5 93.33 92.96 97.30 94.82 85.23 75.51 88.37 98.08 99.82 90.94 58.72 99.85
6 96.62 95.24 98.20 98.13 78.21 80.26 84.10 98.91 99.24 99.19 72.81 99.49
7 88.00 74.26 95.65 76.07 75.19 54.42 82.99 72.89 97.40 25.60 31.39 97.78
8 94.09 97.15 100 99.10 90.78 84.76 89.56 99.08 99.69 99.74 81.56 99.67
9 48.38 56.26 79.75 78.44 62.42 40.57 73.19 89.24 78.42 60.00 9.42 91.58

10 86.73 85.99 94.82 90.66 69.64 68.16 72.79 93.46 97.01 64.59 39.79 97.26
11 91.17 89.67 98.30 94.51 75.77 69.75 69.93 97.79 99.03 76.47 57.72 98.84
12 89.79 67.95 99.44 88.47 57.86 48.79 51.17 92.86 91.15 47.66 32.76 94.14
13 97.35 94.16 96.82 99.49 83.99 74.15 83.52 98.74 99.94 98.67 8089 99.79
14 97.78 96.16 97.23 96.87 87.66 86.08 88.99 98.42 99.17 95.01 78.35 99.95
15 97.45 85.28 98.52 90.22 68.57 47.16 74.73 94.96 92.99 73.19 44.25 98.26
16 84.09 94.69 91.06 90.47 95.23 91.87 93.94 95.46 86.47 75.51 77.20 99.89

OA 91.07 87.19 97.62 94.13 74.47 68.96 73.47 96.51 97.02 76.89 56.91 98.12
AA 88.76 84.35 96.23 91.78 75.71 62.82 78.07 94.80 92.73 67.16 50.61 97.24

κ × 100 89.79 85.38 97.29 93.31 70.74 64.49 69.31 96.02 96.61 73.57 50.21 97.86

Table 5. Classification performance obtained by different methods for Pavia University dataset.
(The optimal performance of OA, AA, and κ × 100 are bolded, No. 1–9 represents accuracy of
each category).

No. HybridSN SSSAN SPRN CVSSN GHAT ViT SF SSTN SSFTT CAN HybridKAN Proposed

1 94.77 93.35 91.17 95.66 85.35 85.36 84.34 97.88 97.20 95.12 62.93 98.21
2 99.16 97.34 99.67 98.61 90.52 88.51 93.81 97.97 99.92 97.86 84.47 99.98
3 89.73 81.99 98.08 87.96 61.52 63.20 69.77 98.13 88.33 0.00 48.13 87.08
4 96.11 98.52 98.68 97.52 96.53 86.71 98.80 95.99 94.08 2.47 76.91 94.88
5 95.68 95.49 99.95 96.64 98.40 93.74 99.05 97.94 99.45 98.80 96.61 99.90
6 99.58 92.68 98.61 96.74 82.45 73.68 89.02 97.96 99.73 13.47 74.20 99.60
7 94.91 86.31 79.10 91.41 71.73 69.24 68.49 99.12 99.93 0.00 44.08 99.97
8 90.99 86.74 87.26 89.73 77.56 78.45 77.43 87.30 92.93 89.08 50.15 96.90
9 91.55 98.96 98.98 97.59 98.01 96.26 99.69 100 93.72 66.87 43.75 97.69

OA 96.68 94.12 96.19 96.20 86.67 83.65 89.12 96.87 97.73 71.42 74.07 98.34
AA 94.72 92.38 94.61 94.65 84.68 81.68 86.71 96.92 96.14 51.52 64.58 97.13

κ × 100 95.59 92.19 94.91 94.96 82.09 78.47 85.42 95.84 97.00 58.86 64.67 97.80
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Table 6. Classification performance obtained by different methods for Houston 2013 dataset. (The opti-
mal performance of OA, AA, and κ × 100 are bolded, No. 1–15 represents accuracy of each category).

No. HybridSN SSSAN SPRN CVSSN GHAT ViT SF SSTN SSFTT CAN HybridKAN Proposed

1 96.85 94.83 97.81 96.93 94.51 91.32 96.18 90.93 97.24 85.62 92.74 99.35
2 98.39 95.16 97.14 97.79 96.70 94.03 97.76 96.73 99.30 83.52 96.30 99.08
3 98.70 96.78 99.93 98.76 97.68 99.49 96.30 99.31 99.68 84.16 99.03 100
4 93.27 95.02 98.29 96.21 94.93 99.02 95.29 99.27 98.79 92.03 94.38 99.78
5 98.85 99.24 99.02 98.97 97.69 96.64 97.82 99.48 100.00 89.25 96.56 100
6 98.29 99.25 99.27 97.03 87.32 96.13 91.06 99.57 96.79 11.20 96.42 98.05
7 87.58 87.78 96.60 91.67 82.94 82.44 85.51 94.18 96.85 78.34 86.42 95.56
8 97.19 92.10 98.82 98.61 88.48 78.11 83.31 96.66 92.65 51.57 88.58 95.12
9 91.80 93.67 95.81 94.60 85.70 74.53 84.54 94.80 94.36 68.86 86.57 99.33

10 95.16 78.82 93.17 94.49 79.30 82.91 83.19 86.04 99.31 51.20 89.18 99.66
11 97.62 96.37 98.39 95.82 82.56 78.81 82.78 97.25 99.57 65.09 90.74 100
12 97.68 85.75 92.35 95.32 83.03 76.94 89.58 94.29 98.19 47.24 87.71 99.12
13 93.14 90.84 96.87 95.83 85.95 62.52 87.58 90.36 94.82 0.22 91.57 93.87
14 99.27 87.13 100 99.03 88.24 91.83 95.42 98.40 100 64.13 94.39 99.95
15 97.36 99.03 100 97.59 95.39 96.12 95.94 97.81 99.44 70.62 96.44 100

OA 95.60 92.03 97.01 96.22 88.94 86.07 90.04 95.00 97.76 68.19 91.72 98.68
AA 96.08 92.82 97.56 96.58 89.36 86.72 90.82 95.67 97.80 62.87 92.47 98.59

κ × 100 95.25 91.39 96.77 95.92 88.03 84.93 89.23 94.60 97.57 65.51 91.04 98.57

Table 7. Classification performance obtained by different methods for Longkou dataset. (The optimal
performance of OA, AA, and κ × 100 are bolded, No. 1–9 represents accuracy of each category).

No. HybridSN SSSAN SPRN CVSSN GHAT ViT SF SSTN SSFTT CAN HybridKAN Proposed

1 98.46 98.53 98.23 99.19 98.96 94.92 94.78 98.75 99.59 99.38 79.92 99.95
2 94.24 65.14 91.14 94.70 77.27 49.89 66.88 89.27 98.50 97.57 57.52 98.53
3 91.92 84.48 99.17 91.70 75.04 45.05 78.75 88.93 97.41 23.80 69.27 98.21
4 98.25 94.86 98.14 97.28 94.01 85.34 93.98 97.69 99.69 94.00 80.57 99.63
5 87.85 45.45 79.19 91.33 52.82 25.59 47.64 78.86 73.81 0.05 60.79 85.68
6 94.70 96.55 84.67 98.64 96.48 87.97 94.04 99.61 99.09 99.77 79.10 99.25
7 99.49 99.52 99.97 99.66 99.79 98.96 99.86 99.30 99.52 99.99 96.45 99.94
8 89.03 91.23 95.05 90.41 69.65 69.26 64.69 83.32 85.76 82.17 62.45 89.61
9 86.71 82.66 88.48 89.18 91.54 62.78 75.58 84.65 92.95 84.23 43.54 92.42

OA 97.35 94.27 94.15 97.68 93.77 88.18 92.19 96.74 98.38 93.74 84.02 98.88
AA 93.41 84.27 92.67 94.68 83.95 68.86 79.58 91.15 94.08 75.66 69.96 95.91

κ × 100 96.52 92.45 92.61 96.95 91.81 84.28 89.75 95.75 97.87 91.79 78.50 98.53

Table 8. Classification performance obtained by different methods for LaoYuHe dataset. (The optimal
performance of OA, AA, and κ × 100 are bolded, No. 1–8 represents accuracy of each category).

No. HybridSN SSSAN SPRN CVSSN GHAT ViT SF SSTN SSFTT CAN HybridKAN Proposed

1 94.88 94.58 95.99 95.12 90.25 90.23 91.86 97.82 95.19 96.45 76.17 96.70
2 94.19 95.56 98.21 96.49 90.46 88.28 95.25 96.06 94.60 97.12 80.69 94.55
3 97.93 93.38 94.12 94.84 84.19 73.95 77.17 97.44 94.68 91.12 73.64 99.39
4 89.81 72.24 95.71 79.78 62.44 53.13 60.48 92.29 90.48 41.11 43.64 94.07
5 97.68 97.76 99.26 97.08 97.30 96.15 94.90 97.74 98.34 97.62 88.47 99.10
6 85.09 77.69 73.45 82.39 56.83 51.12 59.86 86.24 88.14 50.78 41.61 91.67
7 89.58 84.26 90.83 86.50 69.02 62.67 64.73 85.83 96.82 67.09 53.23 97.47
8 79.74 62.83 80.59 80.89 48.67 38.63 62.29 93.93 60.24 0.12 15.41 66.08

OA 93.88 90.11 93.52 91.86 82.45 77.79 80.74 93.86 95.10 82.71 70.76 97.06
AA 91.12 84.79 91.02 89.14 74.89 69.27 75.82 92.17 89.81 67.68 59.11 92.38

κ × 100 92.64 88.10 92.21 90.20 78.76 73.20 76.64 92.59 94.07 79.06 64.50 96.46

Firstly, HybridSN combines 3D convolution and 2D convolution to explore spectral
spatial features. However, due to the limited receptive field of traditional convolutional
kernels, they did not achieve good classification accuracy on all five datasets. Secondly,
SSSAN introduces self-attention mechanisms on top of convolutions, enabling the network
to focus on longer-range information. However, its fusion strategy does not fully take
effect, resulting in lower classification performance. Afterwards, SPRN divides the input
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spectrum into multiple sub-bands by equivalently using grouped convolutions. In addition,
this method also adopts cosine similarity as a metric to enhance the features of samples that
are more similar to the center vector. It can be observed that its classification performance
is better among the comparison methods. Furthermore, CVSSN adopts multiple metrics
such as Euclidean distance and cosine similarity to enhance the main features, and it also
achieves good classification performance. Furthermore, GAHT and SF fully explore the
spectral information in HSI, providing new ideas for HSIC. However, due to the lack of
extraction of spatial information, its classification performance is not ideal. ViT is a baseline
model for GHAT and SF, and its performance and problems are like those of GHAT and
SF. SSTN is a recent Transformer-based HSIC method that effectively explores spectral–
spatial information through a structured search framework, achieving good classification
performance. Finally, methods with hybrid structures generally outperform those that use
only CNNs or only Transformers. SSFTT extracts shallow information through CNN, then
fully leverages the ability of Transformer to extract high-level semantic features through
feature tokens. These two methods fully utilize the advantages of CNN and Transformer,
so they both achieve good classification performance. CAN and HybridKAN are new
backbone networks in the HSIC field, which provide new perspectives for research in this
field. However, their problems are also obvious. When the sample size of categories is
unbalanced, the understanding ability of these two methods for some categories is not ideal.

Although the above methods have achieved good classification performance, the
proposed AFGNet still achieves better classification performance than other methods on all
five datasets. Specifically, on the IP dataset, compared with SPRN, the method with the
highest classification accuracy, the proposed method is 0.5%, 1.01%, and 0.57% higher in
OA, AA, and κ × 100, respectively; on the UP dataset, compared with SSFTT, the method
with the highest classification accuracy, the proposed method is 0.61%, 0.99%, and 0.8%
higher in OA, AA, and κ × 100, respectively; on the HT dataset, compared with SSFTT, the
method with the highest classification accuracy, the proposed method is 0.92%, 0.79%, and
1% higher in OA, AA, and κ × 100, respectively; on the LK dataset and LYH dataset, the
comparison method with the highest classification accuracy is still SSFTT, but the proposed
method still maintains a lead in OA, AA, and κ × 100. These experimental results fully
demonstrate the superiority of the proposed AFGNet in classification performance.

3.7. Comparison of Classification Maps

To more intuitively display the results of quantitative experiments, this section visual-
izes the classification maps of all methods on different datasets, and the specific results are
shown in Figures 7–11, along with the ground truth maps of each dataset. In CNN-based
methods, the influence caused by the limitation of the receptive field of convolutional
kernels can be clearly observed, resulting in many mixed and discontinuous patches in
the classification maps. This is particularly evident in the IP dataset. Additionally, due to
the limitations of its fusion strategy, the visualization results of SSSAN are not satisfactory.
SPRN exhibits good visualization results on the IP dataset, but performs averagely on other
datasets. Particularly, on the LK dataset, there are relatively obvious misclassifications
between the “cotton” (green) category and the “broad-leaf soybean” (yellow) category.

In Transformer-based methods, due to the failure of GAHT and SF to fully utilize
spatial information, the classification maps of these two methods contain more noise,
especially in the IP and UP datasets. The classification maps of ViT also have many
misclassifications similar to salt and pepper noise. In contrast, SSTN achieves more ideal
classification maps by utilizing its unique structured search strategy. The classification
maps of CAN have a large number of misclassifications. HybridKAN has similar problems
to CAN, which is consistent with the results of quantitative experiments.
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As for the methods with hybrid structures, from the perspective of visualization effects,
they are generally superior to the above methods, which is consistent with the quantitative
results in Tables 4–8. In particular, the proposed AFGNet method has a classification
effect that is closer to the ground truth maps, and the frequency and area of discontinuous
patches in unlabeled regions are minimized. On the LK dataset, the classification map
generated by the AFGNet method has the clearest edges, further verifying the effectiveness
and superiority of this method.
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3.8. Comparison of Different Sample Proportions

In this section, OA was used as the evaluation index, and five groups of experiments
with different training ratios were conducted on the five datasets of IP, UP, HT, LK, and
LYH for the proposed method and some comparison methods. The experimental results
are shown in Figure 12. Among them, for the IP and HT datasets, 2.5%, 5%, 7.5%, and 10%
of the samples from each category were selected as the training set, respectively; for the UP
and LYH datasets, the selected ratios were 1%, 2%, 3%, 4%, and 5%; and for the LK dataset,
0.2%, 0.4%, 0.6%, 0.8%, and 1% of the samples were selected as the training set.
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As the sample size increased, the classification performance of most methods im-
proved, but the performance of individual methods showed unexpected fluctuations.
Specifically, due to the failure to effectively utilize spatial information, the performance of
GAHT and SF methods was limited, and their performance ranked at the bottom among
all five datasets. In contrast, the change curve of SSSAN maintained an upward trend,
indicating that its fusion strategy is more suitable for training scenarios with larger sample
sizes. The change curves of SPRN showed unexpected fluctuations, especially SPRN, whose
classification performance on multiple datasets did not improve despite the increase in
sample size. The proposed method and SSFTT both performed stably on all datasets and
consistently ranked in the top two. It is particularly noteworthy that on the LK dataset, the
proposed method showed significant and sustained performance gains. On all five datasets,
the proposed method was able to maintain the optimal classification level, whether in
scenarios with extremely limited sample sizes or in situations with relatively ample sample
sizes, which fully demonstrates the superiority of the proposed method.

3.9. t-SNE Feature Visualization

To comprehensively evaluate the performance of the proposed method, this section
adopts the t-SNE [57] algorithm to visually analyze the feature distributions learned by
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AFGNet and three comparison methods (SPRN, SSTN, SSFTT). Test samples from each
dataset were selected for display, and the results are shown in Figures 13 and 14.
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Among the comparison methods, SSFTT exhibited the best feature visualization results,
while SPRN and SSTN showed limitations to varying degrees. Specifically, SPRN displayed
significant intra-class feature dispersion on multiple datasets, while SSTN suffered from
inter-class feature confusion. This phenomenon indicates that these two methods have
deficiencies in feature discrimination ability.
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In contrast, the proposed method demonstrated significant advantages in visualization
effects. On the IP dataset, AFGNet achieved the largest distance between different classes
and the mildest intra-class dispersion. On the UP dataset, the proposed method also
exhibited the lowest level of inter-class confusion, and features of the same class are basically
distributed in the same region, unlike the dispersion observed in SPRN’s performance on
the UP dataset. These visualization results not only intuitively demonstrate the superiority
of AFGNet in feature learning but also further validate the effectiveness of this method in
improving classification accuracy and discrimination.

3.10. Heat Maps Feature Visualization

In this section, heat maps were utilized to visualize the features learned by the model
at different stages. The experimental results are shown in Figure 15. In the heat map,
compared with the blue area, the red area means that the model pays more attention to
this area.
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(a) Baseline. (b) AFEM. (c) AFEM + GWF2. (d) AFGNet.

First, the baseline model was used, which does not adopt any modules proposed
in this paper. In Figure 15a, it can be observed that the model does not show obvious
areas of interest. Then, the AFEM module was introduced. As seen in Figure 15b, more
concentrated thermal responses appear in some areas, indicating that the model paid more
attention to these areas. Next, the GWF2 module was further merged, which is shown
Figure 15c. At this stage, the model not only paid attention to local structures, but also
significantly increased its attention to long-distance features. Finally, the model containing
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all modules was adopted. As shown in Figure 15d, the heat map clearly demonstrates that
the model has the strongest feature learning ability.

3.11. Robustness

Spectral data are often affected by various degradations, noises, and changes during
the imaging process, which can seriously reduce the data quality and thus affect the
performance of the classifier. This section verified the robustness of the proposed method
in a noisy environment by adding different proportions of Gaussian noise to the UP dataset.
The experimental results are shown in Figure 16, and OA is used as the evaluation indicator.
It can be observed that with the increase of the noise ratio, the performance of all methods
is affected by varying degrees. Among them, the performance of SSRN and SSFTT is most
significantly affected. In contrast, SSTN has the least performance degradation after 10%.
For the proposed method, its classification accuracy is obviously also affected to a certain
extent, but its performance is still better than other methods.
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4. Conclusions
This paper proposes an AFGNet method for HSIC task. Firstly, an AFEM module is

proposed. By accurately evaluating the impact of different features, AFEM can dynami-
cally enhance the most beneficial features, leading to improved classification performance.
Secondly, a GWF2 is proposed. GWF2 not only effectively extracts local detail informa-
tion but also efficiently fuses information from different channels, thereby assisting the
model in more accurately comprehending features. Finally, we propose a MHCA mech-
anism. By directly interacting with and globally modeling the input sequence, MHCA
can more effectively extract key features. Extensive experimental results demonstrate that,
compared to some state-of-the-art methods, the proposed method can provide superior
classification performance.

Nevertheless, this method still has some limitations. For example, in the GWF2
module, although global context information is obtained through spatial mapping and
spectral mapping to assist feature extraction, this process also introduces additional com-
putational costs. In future work, we will build on this work and explore more lightweight
network structures.
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